
a new DSL textbook in town!

thorsten berger

Keynote, Educators Symposium

Domain-Specific
Languages
Effective Modeling, Automation,
and Reuse

Andrzej Wasowski
Thorsten Berger

Andrzej Wasowski Thorsten Berger

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

my interest in DSLs

2007 student job: developed eAssessment software
customizable web app (struts), portal
server (jetspeed-2), authoring tools

using model-driven technology
Eclipse EMF with GEF, and JAXB

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

back at that time

[Stahl and Völter 2006]
likely the most-referenced book on MDSE
helped to establish MDSE as a field
made it known to practitioners
UML-based approach to DSLs

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

more DSL books
thanks for the

foreword, Ralf!

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

standards and frameworks

Object Management Group (OMG)

Eclipse Foundation

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

allowed building large-scale safety-critical software

figure from: https://www.vsd-project.org/download/presentations/VSD_P2_FP_2012-05-15_v3.pdf

www.vsd-project.org

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

https://www.vsd-project.org/download/presentations/VSD_P2_FP_2012-05-15_v3.pdf

DSLs for autonomous driving

Queiroz, Berger, Czarnecki, “Geoscenario: An Open DSL for Autonomous Driving Scenario
Representation,” in 30th IEEE Intelligent Vehicles Symposium (IV), 2019.

Queiroz, Sharma, Caldas, Czarnecki, Garcıá, Berger, Pelliccione, “A Driver-Vehicle Model for
ADS Scenario-based Testing,” arXiv preprint arXiv:2205.02911, 2022. (pdf)

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

many different technological spaces

modelware (SE perspective)
grammarware (PL perspective)

others, according to [Lämmel 2018]
XMLware (e.g., XML, XML infoset, DOM, DTD, XML Schema, XPath, XQuery, XSLT)
JSONware (e.g., JSON, JSON Schema, JSONata)
SQLware (e.g., table, SQL, relational model, relational algebra, WOL),
RDFware (e.g., resource, triple, Linked Data, RDF, RDFS, OWL, SPARQL, STTL)
Objectware (e.g., objects, object graphs, object models, state, behavior, visitor pattern)
Javaware (e.g., Java, Java bytecode, JVM, Eclipse, JUnit)

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

DSLs in the age of agile development?

DSLs for automation more important than ever!
also seen in the rise of low-code/no-code platforms

example agile practice:
continuous integration / delivery / deployment

automation abstraction language
requires requires

image source:
https://blog.itil.org/2016/07/wort-zum-montag-cd-continous-delivery

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

“Language is sufficient to any
thought. Imperfect expression is the

fault of limited writers, not limited language.”

Francis-Noël Thomas Mark Turner

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

“Parser development is still a black art.”

Paul Klint, Ralf Lämmel, and Chris Verhoef. “Toward an engineering discipline for Grammarware”. ACM Trans. Softw. Eng. Methodol. 2005

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

{
"Lego": "Star",
"Length": 20,
"Width": 20,
"Bricks" : [{

"Brick": "Wars",
"Width": [4],
"Length": [2]

}, {
"Brick": "Trek",
"Width": [2],
"Length": [2]

}]
}

smaller DSLs built in my course

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

a DSL for Lego bricks

AdjLegoSystem {
thickness 20
finalBrick Pizza
abstractlegobrick {

RoundedBrick Pizza{
roundedSide ALL
sizeproperties {

int length = 7,
int width = 7

}
},
SlicedBrick Slice {

portions 3
brick Pizza

}
}

}

built with different styles of concrete syntax

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

AdjLegoSystem {
thickness 7
finalBrick Boomerang
abstractlegobrick {

RoundedBrick Frisbee{
roundedSide RIGHT
sizeproperties {

int length = 4,
int width = 2

}
},

SquareBrick Stick {
sizeproperties {

int length = 4,
int width = 2

}
},

Combination Boomerang {
mainSide LEFT
position 3
main Frisbee
secondary Stick

}
}

containing composition operators

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

dimensions 10 x 10;
"2x4": 2 x 4;
"4x2": 4 x 2;
"1x8": 1 x (2 * "4x4".width);
"4x4": "2x4".height x (2 * "2x4".width);
"Composite Brick 1": "2x4" <- "4x4" TOP: LEFT 1 <- LEFT 1;
"Composite Brick 2": "2x4" <- "4x2" BOTTOM: LEFT 1 <- LEFT 4;
"Composite Brick 3": "1x8" <- "4x2" RIGHT: TOP 1 <- BOTTOM 2;

many more styles of concrete syntax

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

brick smiley
o o o o o o o o,
o _ _ o o _ _ o,
o _ _ o o _ _ o,
o o o o o o o o,
o _ o o o o _ o,
o _ _ _ _ _ _ o,
o o o o o o o o,

maxwidth 10
maxlength 10

abstract brick a
o o o,
o o o,

abstract brick b
_ o o,
_ o o,
_ o o,

combo T a over b

unleashing creativity

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

So how do we teach DSL engineering?

How can our book help?

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

CONCRETE EXAMPLES EXEMPLIFY PRINCIPLES

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

finite state machines as a DSL

domain analysis to identify
concepts and relationships
formalize in a meta-model

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

finite state machine (FSM) DSL

abstract syntax

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

principles

guideline 3.1: create a single partonomy
guideline 3.2: avoid interfaces and methods

...

guideline 3.7: let the meta-model describe the
problem, not the software tool solving it
guideline 3.8: avoid scope creep

... partonomy of FSM

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

meta-modeling
hierarchy

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

multi-level modeling?

a concept that is now easy to explain upon
the meta-modeling hierarchy

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

DEFINITIONS:
FROM 'WALLS OF THOUGHT' TO CRISP CONCEPTS

easier to remember, easier to understand

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

quality assurance of meta-models

Definition 3.4. A meta-model is consistent if it can be instantiated meeting all constraints of the meta-
modeling language semantics. A meta-model is element-consistent if for each element of the meta-
model there exists an instance in which this element is instantiated.

Definition 3.5. A meta-model is parsimonious if it contains no meta-classes, no relations (references,
associations), and no attributes that do not address any system requirements for the modeling language.

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

static semantics of DSLs

an unexpected instance

Definition 5.3. A constraint is a pure (side-effect free) Boolean expression declared over elements of a
meta-model, but interpreted over its instances. Its purpose is to restrict the set of valid instances of the
meta-model.

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

more illustrative examples

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

static semantics: meta-model + domain / type constraints

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

ingredients of a type system

unlike a typical constraint, a type system examines the entire instance, not just few related objects
may overwhelm when compared to the terse structural constraints

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

CONCRETE EXERCISES:
TRAIN BUILDING LOW-LEVEL SKILLS

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

creating instances

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

writing constraints

Exercise 5.33. Write the following constraint in the context of the printer pool
class in the meta-model: Each printer pool with a fax must have a printer, and
each printer pool with a copier must have a scanner and a printer.

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

writing interpreters

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

PL PERSPECTIVE LINKED AND MIXED
WITH SE PERSPECTIVE

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

meta-models vs. algebraic data types

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

model transformation example

FSM to petri nets

QVT-O

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

program transformation example

manipulate logical expressions
constant propagation
expression simplification
conversion into conjunctive normal form (CNF)

using term rewriting
specifically strategic programming with kiama
https://github.com/inkytonik/kiama

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

if you don’t have a
transformation language...

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

or apply the wrong paradigm for your problem?

expression simplification in Henshin (graph transformation)
rewriting of ((A∧B)∧C) when B =C
equivalent to one line in Scala

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

external vs internal DSLs

internal DSL in Scala
(PL perspective)

external DSL in Xtext
(SE perspective)

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

FSM (finite state machine) as an internal DSL

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

Lunar lander

not part of this book
limitation of our engineering support?

https://www.scala-lang.org/old/node/1403Thorsten Berger, keynote address, MODELS'22 Educators Symposium

TEACHING TO TEST IS TEACHING TO BUILD

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

testing a program transformation

let’s test our transformation of logical
expression to conjunctive normal form (CNF)

simple scenarios that cover individual
transformation rules

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

instance generation

problem: instance generation
i.e., generate large expressions

the book shows how to use
Alloy or
Scalacheck’s Gen API

let’s implement an instance
generator pragmatically

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

the oracle problem

test oracle
tell whether expression is in CNF or not

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

TEACH SMALL AND LARGER DSLS

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

larger DSL: robot (with ROS and webots infrastructure)

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

larger DSL: prpro (probabilistic programming)

with PyMC infrastructure

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

many more topics in the book

interpretation

code generation

internal DSLs

DSLs for product lines

DSL product lines

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

BRINGING IT ALL TOGETHER IS CHALLENGING

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

start teaching with an overview example

Students find it
challenging bringing
all the different
parts of creating a
DSL together

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

HIGHLIGHTS

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

DSL engineering

establish an engineering perspective
teach problem-oriented creation of DSLs
cover different engineering activities

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

PL and SE

teach solutions from both fields, which overlap!

PL perspective (grammarware)
parsing
algebraic data types (ADTs)
pretty printing
...

SE perspective (modelware)
text-to-model transformation
meta-model
model-to-text transformation
...

Main NEC Building, photo by Sergey Vladimirov on Flickr

Software
Engineering

Programming

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

exercises, guidelines, examples

277 exercises

71 guidelines

>30 examples
many with sources in our code repository

http://dsl.design

502 pages

Thorsten Berger, keynote address, MODELS'22 Educators Symposium

http://dsl.design/

thanks for your time!

a new DSL textbook in town!
Thorsten Berger*

thorsten.berger@rub.de

http://dsl.design

thorsten_berger
*hiring (postdoc position, A13, 3+3 years)

	a new DSL textbook in town!
	Slide Number 2
	my interest in DSLs
	back at that time
	more DSL books
	standards and frameworks
	allowed building large-scale safety-critical software
	DSLs for autonomous driving
	many different technological spaces
	DSLs in the age of agile development?
	Slide Number 11
	Slide Number 12
	smaller DSLs built in my course�
	built with different styles of concrete syntax
	containing composition operators
	many more styles of concrete syntax
	unleashing creativity
	Slide Number 18
	concrete examples exemplify principles
	finite state machines as a DSL
	finite state machine (FSM) DSL�
	principles
	meta-modeling�hierarchy
	multi-level modeling?
	definitions:�from 'wallS of thought' to crisp concepts
	quality assurance of meta-models
	static semantics of DSLs
	more illustrative examples
	static semantics: meta-model + domain / type constraints
	ingredients of a type system
	Slide Number 31
	concrete exercises:�train building low-level skills
	creating instances
	writing constraints
	writing interpreters
	PL perspective linked and mixed�with SE perspective
	meta-models vs. algebraic data types
	model transformation example
	program transformation example
	if you don’t have a transformation language...
	or apply the wrong paradigm for your problem?
	external vs internal DSLs
	FSM (finite state machine) as an internal DSL
	Lunar lander
	Teaching to test is teaching to build
	testing a program transformation
	instance generation
	the oracle problem
	teach small and larger DSLs
	larger DSL: robot (with ROS and webots infrastructure)
	larger DSL: prpro (probabilistic programming)
	many more topics in the book
	bringing it all together is challenging
	start teaching with an overview example
	highlights
	DSL engineering
	PL and SE
	exercises, guidelines, examples
	thanks for your time!
	backup slides
	Slide Number 61
	Slide Number 62
	small DSLs
	guidelines for specifying concrete syntax

